Inversa de uma Matriz
Dada uma matriz quadrada $A_{m \times m}$, sua inversa $A^{−1}_{m \times m}$ é uma matriz tal que $AA^{−1}=A^{−1}A=I_{m}$. Para que uma matriz $A$ seja invertível, seu determinante $\det(A)$ deve ser diferente de zero. Dada uma matriz $A$ tal que $\det(A) \neq 0$ , sua inversa $A^{−1}$ é dada por:
$$
A^{-1} = \frac{1}{\det(A)} \cdot adj(A)
$$
Exemplo 5
Qual a matriz inversa de $\begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix}$ ?
Solução
Essa matriz foi apresentada como exemplo quando apresentamos o cálculo dos determinantes e das matrizes adjuntas. Vimos que:
$$
\det \left( \begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix} \right) = -383
\text{ e } \\
adj \left( \begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix} \right) =
\begin{bmatrix} 8 & 5 & -48 \\ -5 & -51 & 30 \\ -62 & 57 & -11 \\ \end{bmatrix}
$$
portanto
$$
\begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix} =
\left( - \frac{1}{383} \right) \cdot \begin{bmatrix} 8 & 5 & -48 \\ -5 & -51 & 30 \\ -62 & 57 & -11 \\ \end{bmatrix}
$$
$$
= \begin{bmatrix} -\frac{8}{383} & -\frac{5}{383} & \frac{48}{383} \\ \frac{5}{383} & \frac{51}{383} & -\frac{30}{383} \\ \frac{62}{383} & \frac{57}{383} & \frac{11}{383} \\ \end{bmatrix}
$$
Podemos verificar a propriedade da inversa mostrando que $AA^{−1}=A^{−1}A=I_{m}$
$$
\begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix} \cdot
\begin{bmatrix} -\frac{8}{383} & -\frac{5}{383} & \frac{48}{383} \\ \frac{5}{383} & \frac{51}{383} & -\frac{30}{383} \\ \frac{62}{383} & \frac{57}{383} & \frac{11}{383} \\ \end{bmatrix} =
$$
$$
\begin{bmatrix}
3 \cdot \left(-\frac{8}{383}\right) + 7 \cdot \left(\frac{5}{383}\right) + 6 \cdot \left(\frac{62}{383}\right) &
3 \cdot \left(-\frac{5}{383}\right) + 7 \cdot \left(\frac{51}{383}\right) + 6 \cdot \left(-\frac{57}{383}\right) &
3 \cdot \left(\frac{48}{383}\right) + 7 \cdot \left(-\frac{30}{383}\right) + 6 \cdot \left(\frac{11}{383}\right) \\
5 \cdot \left(-\frac{8}{383}\right) + 8 \cdot \left(\frac{5}{383}\right) + 0 \cdot \left(\frac{62}{383}\right) &
5 \cdot \left(-\frac{5}{383}\right) + 8 \cdot \left(\frac{51}{383}\right) + 0 \cdot \left(-\frac{57}{383}\right) &
5 \cdot \left(\frac{48}{383}\right) + 8 \cdot \left(-\frac{30}{383}\right) + 0 \cdot \left(\frac{11}{383}\right) \\
9 \cdot \left(-\frac{8}{383}\right) + 2 \cdot \left(\frac{5}{383}\right) + 1 \cdot \left(\frac{62}{383}\right) &
9 \cdot \left(-\frac{5}{383}\right) + 2 \cdot \left(\frac{51}{383}\right) + 1 \cdot \left(-\frac{57}{383}\right) &
9 \cdot \left(\frac{48}{383}\right) + 2 \cdot \left(-\frac{30}{383}\right) + 1 \cdot \left(\frac{11}{383}\right) \\
\end{bmatrix} =
$$
$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
$$
e
$$
\begin{bmatrix}
-\frac{8}{383} & -\frac{5}{383} & \frac{48}{383} \\
\frac{5}{383} & \frac{51}{383} & -\frac{30}{383} \\
\frac{62}{383} & -\frac{57}{383} & \frac{11}{383} \\
\end{bmatrix} \cdot
\begin{bmatrix}
3 & 7 & 6 \\
5 & 8 & 0 \\
9 & 2 & 1 \\
\end{bmatrix} =
$$
$$
\begin{bmatrix}
\left(-\frac{8}{383}\right) \cdot 3 + \left(-\frac{5}{383}\right) \cdot 5 + \left(\frac{78}{383}\right) \cdot 9 &
\left(-\frac{8}{383}\right) \cdot 7 + \left(-\frac{5}{383}\right) \cdot 8 + \left(\frac{48}{383}\right) \cdot 2 &
\left(-\frac{8}{383}\right) \cdot 6 + \left(-\frac{5}{383}\right) \cdot 0 + \left(\frac{48}{383}\right) \cdot 1 \\
\left(\frac{5}{383}\right) \cdot 3 + \left(\frac{51}{383}\right) \cdot 5 + \left(\frac{48}{383}\right) \cdot 9 &
\left(\frac{5}{383}\right) \cdot 7 + \left(\frac{51}{383}\right) \cdot 8 + \left(-\frac{30}{383}\right) \cdot 2 &
\left(\frac{5}{383}\right) \cdot 6 + \left(\frac{51}{383}\right) \cdot 0 + \left(-\frac{30}{383}\right) \cdot 1 \\
\left(\frac{62}{383}\right) \cdot 3 + \left(-\frac{57}{383}\right) \cdot 5 + \left(\frac{11}{383}\right) \cdot 9 &
\left(\frac{62}{383}\right) \cdot 7 + \left(-\frac{57}{383}\right) \cdot 8 + \left(\frac{11}{383}\right) \cdot 2 &
\left(\frac{62}{383}\right) \cdot 6 + \left(-\frac{57}{383}\right) \cdot 0 + \left(\frac{11}{383}\right) \cdot 1 \\
\end{bmatrix} =
$$
$$
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
$$
Logo, comprovamos que a inversa de $\begin{bmatrix} 3 & 7 & 6 \\ 5 & 8 & 0 \\ 9 & 2 & 1 \\ \end{bmatrix}$ é $\begin{bmatrix} -\frac{8}{383} & -\frac{5}{383} & \frac{48}{383} \\ \frac{5}{383} & \frac{51}{383} & -\frac{30}{383} \\ \frac{62}{383} & -\frac{57}{383} & \frac{11}{383} \\ \end{bmatrix}$
Propriedades de uma Matriz Inversa
Dada uma matriz A invertível, temos as propriedades apresentadas a seguir.